Evolución del análisis químico de aceleradores de incendios con fines forenses

Autores/as

  • Alejandro Vargas Ocampo Universidad de Caldas
  • William Garzón Méndez Fiscalía General de la Nación
  • Gonzalo Taborda Ocampo Universidad de Caldas

DOI:

https://doi.org/10.16925/2145-9649.2019.02.01

Palabras clave:

incendios provocados, aceleradores de incendios, análisis de aceleradores de incendios, investigación forense de incendios

Resumen

Tema y alcance: el objetivo de esta revisión es establecer la evolución que ha tenido el proceso de análisis químico para la determinación de aceleradores de incendios, desde sus inicios hasta brindar una perspectiva actual de las metodologías y consideraciones fundamentales para tal análisis. Características: el análisis de aceleradores de incendios se ha caracterizado por evolucionar, conforme lo ha hecho la instrumentación analítica; en este sentido, los procesos de extracción de aceleradores de incendios, en la actualidad, permiten la recuperación de una gran variedad de compuestos, con significativa sensibilidad. Por otra parte, la cromatografía de gases se ha convertido en la técnica predilecta para el análisis de aceleradores de incendios, debido a la volatilidad de los compuestos presentes en tales sustancias. Hallazgos: las investigaciones químicas realizadas hasta la fecha han favorecido la descripción de una serie de factores que modifican la composición de los residuos de los aceleradores de incendios tras incineración y, por ende, el perfil cromatográfico obtenido; entre dichos factores son de resaltar el grado de evaporación de los compuestos, el efecto de la matriz sobre la incineración, la pirólisis, los procesos de combustión, la mezcla con otras sustancias con fines criminales, la variabilidad inherente de los aceleradores y la temperatura alcanzada en cada incineración. Conclusiones: la presente revisión encontró que las investigaciones químicas en la actualidad, en cuanto a determinación de aceleradores de incendios, se encuentran centradas en el muestreo del espacio de cabeza para extraer los compuestos volátiles (mediante tubos de carbón adsorbente y microextracción en fase sólida – MEFS); la cromatografía de gases acoplada a espectrometría de masas (CG-DSM) es la técnica de análisis más empleada debido a la volatilidad del extracto y la información que se obtiene a partir de los espectros de masas sobre la naturaleza de los compuestos. Por último, se resaltan las diferentes complicaciones que surgen en el proceso de análisis debido a las variables grado de evaporación de los compuestos, efecto de la matriz sobre la incineración, pirólisis, procesos de combustión, variabilidad inherente de los aceleradores y temperatura alcanzada en cada incineración.

Biografía del autor/a

Alejandro Vargas Ocampo, Universidad de Caldas

Magíster en Química

William Garzón Méndez, Fiscalía General de la Nación

Director del Laboratorio de Química del Cuerpo Técnico de Investigación de la Fiscalía General de la Nación

Gonzalo Taborda Ocampo, Universidad de Caldas

Docente Departamento de Quimica de la Facultad de Ciencias Exactas y Naturales

Referencias bibliográficas

Stauffer E, Dolan J, Newman R. Fire debris analysis. Amsterdam. Elsevier Inc. Academic Press; 2008. 672 p.

Farrell LG. Reduced pressure distillation apparatus in police science. Journal of Criminal Law and Criminology. 1947;38(4):438.

Brackett JW. Separation of flammable material of petroleum origin from evidence submitted in cases involving fires and suspected arson. Journal of Criminal Law, Criminology and Police Science. 1955;46(4):554-61.

Ettling BV. Determination of hydrocarbons in fire remains. J. Forensic Sci. 1963;8(2):261-7.

Ettling BV, Adams MF. The study of accelerant residues in fire remains. J. Forensic Sci. 1968;13(1);76-89.

Yip IHL, Clair EG. A rapid analysis of accelerants in fire debris. Journal (Can Soc Forensic Sci). 1976;9(2):75-80. Doi: https://doi.org/10.1080/00085030.1976.10757248

Russell LW. The concentration and analysis of volatile hydrocarbons in fire debris using Tenax-GC. J Forensic Sci Soc. 1981;21(4):317-26. doi: https://doi.org/10.1016/s0015-7368 (81) 71413-0

Juhala JA. A method for adsorption of flammable vapors by direct insertion of activated charcoal into the debris samples. Arson Analysis Newsletter. 1982;6(2):32-6.

Alberca CM. Ortega FE, García C. Analytical tools for the analysis of fire debris. A review: 2008-2015. Anal Chim Acta. 2016;918:1-19. Doi: https://doi.org/10.1016/j.aca.2016.04.056

Kerr J. Sample preparation for de analysis of fire debris-Past and present. J. Sep. Sci. 2018. Doi: https://doi.org/10.1002 / jssc.201800556

Yang Q. GC-MS Analysis on the Trace Residue of Gasoline Combustion. Procedia Eng. 2016;135: 321-25. Doi: https://doi.org/10.1016/j.proeng.2016.01.137

Furton KG, Bruna J, Almirall JR. A simple, inexpensive, rapid, sensitive and solventless technique for the analysis of accelerants in fire debris based on SPME. J High Resolut Chromatogr. 1995;18(10):625-9. Doi: https://doi.org/10.1002/jhrc.1240181003

Steffen A, Pawliszyn J. Determination of liquid acelerants in arson suspected fire debris using HS-SPME. Anal. Commun. 1996;4(33):129-131. Doi: https://doi.org/10.1039/AC9963300129

Fettig I, Krüger S, Deubel JH, Werrel M, Raspe T, Piechotta C. Evaluation of a headspace solid-phase microextraction method for the analysis of ignitable liquids in fire debris. J. Forensic Sci. 2014;59(3):743-749. Doi: https://doi.org/10.1111/1556-4029.12342

Sanagi MM, Basri RS, Miskam M, Ibrahim WAW, Ahmad UK, Aboul-Enein, H Y. Headspace Single Drop Microextraction for the analysis of fire accelerants in fire debris samples. Anal. Lett. 2010;43(14), 2257-66. Doi: https://doi.org/10.1080/00032711003698838

St Pierre KA, Desideiro K, Hall AB. Recovery of oxygenated ignitable liquids by zeolites, Part I: Novel extraction methodology in fire debris analysis. Forensic Sci. Int. 2014;240:137-43.

Katte W, Specht W. Die chemische Identifi zierung von Benzinrückständen. Archiv für Kriminologie. 1955;115:116-17.

Adams DL. The extraction and identification of small amounts of accelerants from arson evidence. Journal of Criminal Law, Criminology and Police Science. 1957;47(5): 593-6.

Cadman WJ, Johns T. Application of the gas chromatograph in the laboratory of criminalistics. J. Forensic Sci. 1960;5(3):369-85.

Lucas DM. The identification of petroleum products in forensic science by gas chromatography. J. Forensic Sci. 1960;5(2):236-47.

Mach MH. Gas chromatography-mass spectrometry of simulated arson residues using gasoline as an accelerant. J. Forensic Sci. 1977;22(2):348-57.

Meal L. Arson analysis by second derivate ultraviolet spectrometry. Anal. Chem. 1986;58:834-36. Doi: https://doi.org/10.1021/ac00295a041

Frysinger GS, Gaines RB. Forensic analysis of ignitable liquids in fire debris by comprehensive two-dimensional gas chromatography. J. Forensic Sci. 2002;47(3):471-82.

Phillips JB, Tang Y, Cerven JF. Prospective new method for fire debris analysis using comprehensive two-dimensional gas chromatography, Pittsburgh Conference, Chicago, IL. 1996.

Tiyapongpattana W, Wilairat P, Marriott PJ. Characterization of biodiesel and biodiesel blends using comprehensive two-dimensional gas chromatography. J. Sep. Sci. 2008;31(14);2640-49. doi: https://doi.org/10.1002/jssc.200800234.

Fialkov A, Gordin A, Amirav A. Hydrocarbons and fuels analyses with the supersonic gas chromatography mass spectrometry e the novel concept of isomer abundance analysis. J. Chromatogr. A. 2008;1195(1-2):127-135. Doi: https://doi.org/10.1016/j.chroma.2008.04.074

Salgueiro PAS, Borges CMF, Bettencourt da Silva RJN. Valid internal standard technique for arson detection based on gas chromatography mass spectrometry. J. Chromatogr. A. 2012;1257: 189-194.

Baerncopf JM, Mc Guffin VL, Waddell Smith R. Effect of gas chromatography temperature program on the

association and discrimination of diesel samples. J. Forensic Sci. 2010;55:185-92.

Clodfelter RW, Hueske EE. A comparison of decomposition products from selected burned materials with common arson accelerants. J. Forensic Sci. 1976;22(1):116-18.

Smith MR. Arson analysis by mass chromatography. Anal. Chem. 1982;54(13):1399A-409A. Doi: https://doi.org/10.1021/ac00250a002

Stone IC, Lomonte JN. False positive in analysis of fire debris. Fire and Arson Investigator. 1984;34(3):36-40.

Bertsh W. Volatiles from carpet. J. Chromatogr. A. 1994;674(1-2):329-33. Doi: https://doi.org/10.1016/0021-9673(94)85238-3

Lentini JJ, Dolan JA, Cherry C. The petroleum-laced background. J. Forensic Sci. 2000;45(5):968-89. Doi: https://doi.org/10.1520/JFS14819J

Almirall JR, Furton KG. Characterization of background and pyrolysis products that may interfere with the forensic analysis of fire debris. J Anal Appl Pyrolysis. 2004;71(1), 51-67. Doi: https://dx.doi.org/10.12988/pacs.2013.3413

Darrer M, Jacquemet-Papilloud J, Delémont O. Gasoline on hands: Preliminary study on collection and persistence. Forensic Sci. Int. 2008;175(2-3);171-178. Doi: https://doi.org/10.1016/j.forsciint.2007.06.017

Birks HL, Cochran AR, Williams TJ, Jackson GP. The surprising effect of temperature on the weathering of gasoline. Forensic Chem. 2017;4:32-40. Doi: https://dx.doi.org/10.1016/j.forc.2017.02.011

Turner DA. A comprehensive study of the alteration of ignitable liquids by weathering and microbial degradation. J. Forensic Sci. 2017;63(2):1-8. Doi: https://doi.org/10.1111/1556-4029.13527

Kolleck M. Fire suppression technology applied to chemical/biological warfare protection, Surviac Bull. [Internet]. 2001 [revisión 2019 ag. 5]; 17(2). Disponible en: https://csystemsgpg.com/index.php/products/fire-suppression

Turner DA, Goodpaster JV. The effects of microbial degradation on ignitable liquids. Anal. Bioanal. Chem. 2009;394(1):363-371. Doi: https://doi.org/10.1007/s00216-009-2617-z

Hutches K. Microbial degradation of ignitable liquids on building materials. Forensic Sci. Int. 2013;232:38-41.

Turner DA, Goodpaster JV. Preserving ignitable liquid residues on soil using Triclosan as an anti-microbial agent”. Forensic Sci. Int. 2014;239, pp. 86-91.

Alberca CM, García C. Study of chemical modifications in acidified ignitable liquids analyzed by GC-MS. Sci. Justice. 2015;55(6):446-55. Doi: https://doi.org/10.1016/j.scijus.2015.06.006

Alberca CM, Ortega FE, García C. Study of spectral modifications in acidified ignitable liquids by ATR-FTIR spectroscopy. Appl. Spectrosc. 2016;70(3):520-30. Doi: https://doi.org/10.1177/0003702815626681

Jhaumeer-Laulloo S, Maclean J, Ramtoola L., Duyman K, Toofany A. Characterization of background and pyrolysis products that may interfere with forensic analysis of fire debris in Mauritius. Pure Appl. Chem. Sci. 2013;1(2):51-61. Doi: https://dx.doi.org/10.12988/pacs.2013.3413

Li D, Liang H, Shen Y. An analysis of background interference on fire debris. Procedia Eng. 2013;52:664-670. Doi: https://doi.org/10.1016/j.proeng.2013.02.203

Aqel, A. Dhabbah, A.M., Yusuf, K. AL-Harbi N, Al-Othman Z, Badjah-Hadj-Ahmed Y. Determination of gasoline and diesel residues on wool, silk, polyester and cotton materials by SPME-GC-MS. J Anal Chem. 2016;71:730-36. Doi: https://doi.org/10.1134/S1061934816070029

Guerrera G, Chenb E, Powersa R, Brooke W. The potential interference of body products and substrates to the identification of ignitable liquid residues on worn clothing. Forensic Chem. 2013;12:46-57.

Zorzetti BM, Shaver JM, Harynuk JJ. Estimation of the age of a weathered mixture of volatile organic compounds. Anal. Chim. Acta, 2011;694(1-2):31-37. Doi: https://doi.org/10.1016/j.aca.2011.03.021

Zorzetti BM, Harynuk JJ. Using GC x GC-FID profiles to estimate the age of weathered gasoline samples. Anal. Bioanal. Chem. 2011;401(8):2423-2431. Doi: https://doi.org/10.1007/s00216-011-5130-0

Monfreda M, Gregori A. Differentiation of unevaporated gasoline samples according to their brands, by SPME-GC-MS and multivariate statistical analysis. J. Forensic Sci. 2011;56(2):372-80. Doi: https://doi.org/10.1111/j.1556-4029.2010.01644.x

Allen A, Williams M, Sigman E. Application of likelihood ratios and optimal decision thresholds in fire debris analysis based on a partial least squares discriminant analysis (PLSDA) model. Forensic Chem. 2019;16:100-8.

Doi: https://doi.org/10.1016/j.forc.2019.100188

Cómo citar

1.
Vargas Ocampo A, Garzón Méndez W, Taborda Ocampo G. Evolución del análisis químico de aceleradores de incendios con fines forenses. Antistio Rev. Cient. INMLCF Colomb. [Internet]. 14 de julio de 2020 [citado 6 de diciembre de 2025];6(2):1-22. Disponible en: https://www.revistasforensesmedicinalegalgovco.biteca.online/index.php/an/article/view/3886

Descargas

Los datos de descargas todavía no están disponibles.

Descargas

Publicado

14-07-2020

Número

Sección

Artículo de revisión